

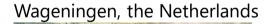
KEYGENE THE TECHNOLOGY ENGINE FOR CROP IMPROVEMENT

Arjen van Tunen

START PRESENTATION

KEYGENE INTRODUCTION

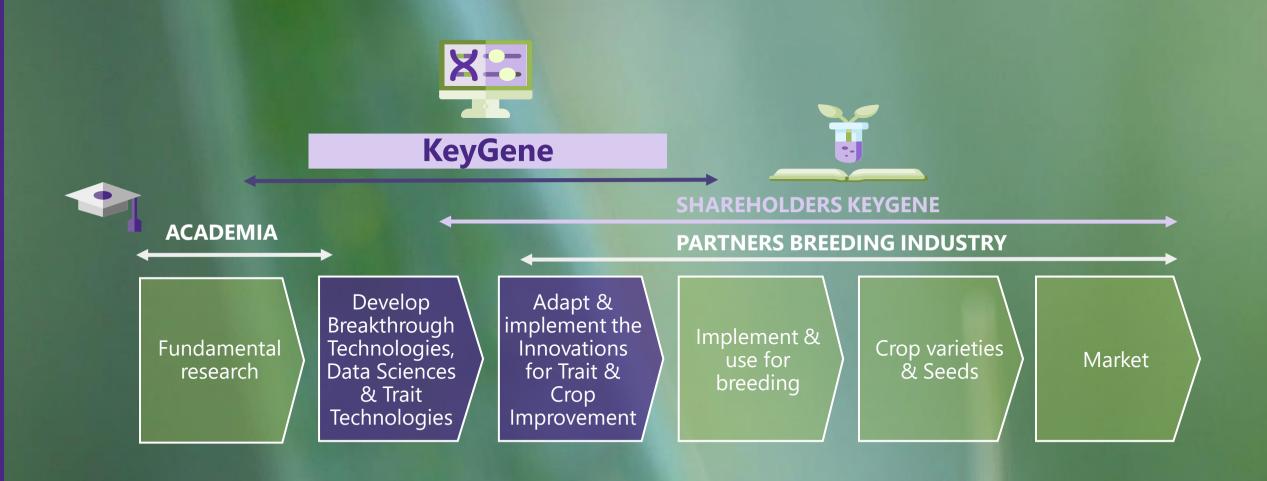
KeyGene About us link to company movie on YouTube


OUR LOCATIONS AND STRENGTH

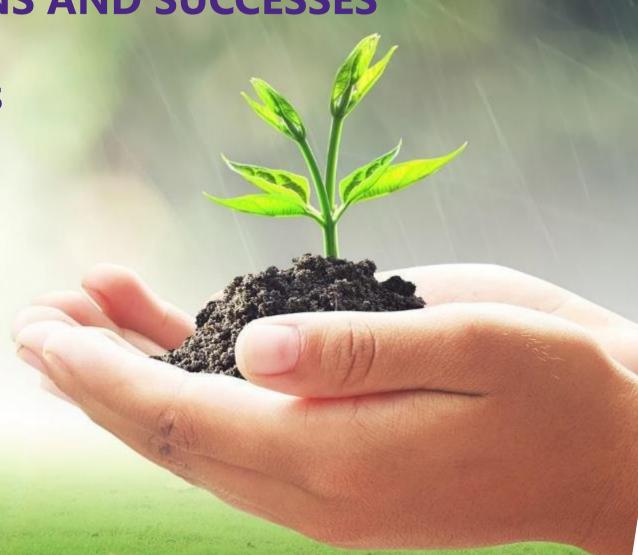
DEDICATED AND INNOVATION DRIVEN, INTERNATIONAL, 150 EMPLOYEES ON THREE CONTINENTS

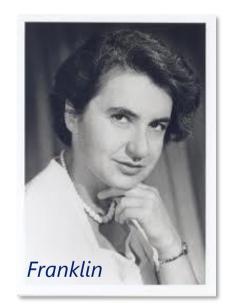
- > Molecular Geneticists & Plant Breeders
- > Data Scientists & Bio-informaticians
- > Phytopathologists
- > Patent & legal specialists
- > Commercial & business personnel

500 PATENTS & PATENT



Hyderabad, India

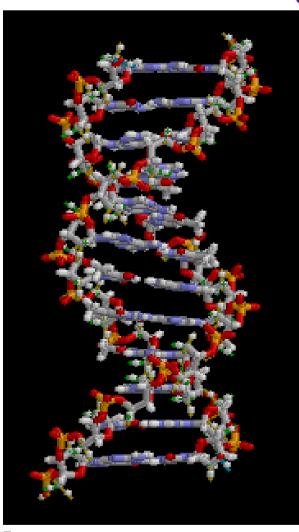

POSITIONING

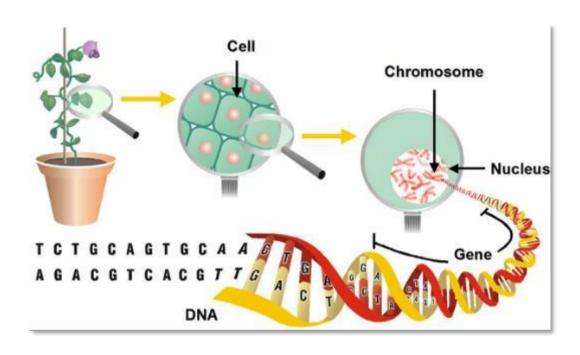

SELECTED KEYGENE CONTRIBUTIONS AND SUCCESSES

- BREAKTHROUGH TECHNOLOGIES
- BETTER TRAITS
- NEW AND IMPROVED CROPS

DNA: CARRIER OF GENETIC INFORMATION

In every cell an identical genetic code is present: also in a plant cell





DNA: SOURCE OF GENETIC INFORMATION

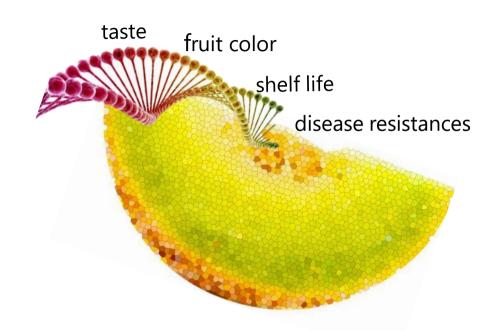
DNA the basis for breeding: since 1953

DNA has 4 building blocks (GATC)
not digital but quatro-code
in all plant cells

BREAKTHROUGH TECHNOLOGIES: DNA THE SOURCE OF GENETIC INFORMATION

Molecular Plant Breeding

Which DNA differences are socio economically important?
How can we increase the amount of useful differences?
Which differences can we use to develop better crops in a non GM way?


<u>Identify</u> genetic variation (differences)
<u>Induce</u> genetic variation (differences) via mutagenesis or with CRISPR (GE)

BREAKTHROUGH DNA TECHNOLOGIES: PROGRESS IN GENOME SEQUENCING

KeyGene successfully applied 'Nanopore DNA sequencing' in plants by combining:

- Isolation and enrichment of HMW DNA
- de novo long read sequencing on a.o. the ONT PromethION

Impact: after DNA sequencing selected regions in crop DNA encoding crucial traits can be idenitified, breeders can better understand genetic variation for development of new varieties.

BREAKTHROUGH DATA HANDLING TECHNOLOGIES: THE WORLD'S FAMOUS "CROPPEDIA" INTERACTIVE DATA BASE

KeyGene's powerful data analysis & visualization platform to handle proprietary & public data for any crop

Impact: interactive & easy to use in-house software for improved decision making

advanced compute

data integration

data storage

public & proprietary data sources

automated input quality control

system integration

data security

available as SaaS

advanced user management

BREAKTHROUGH MUTAGENESIS TECHNOLOGY: KEYPOINT® BREEDING

Sequence based mutagenesis breeding system

Operational in many crops

Vegetables

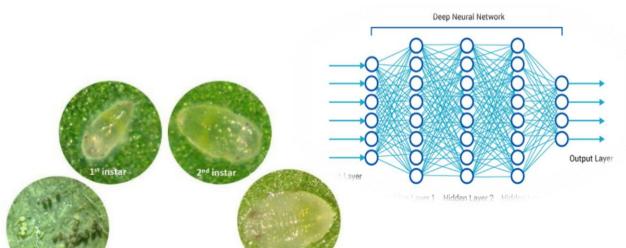
Tomato, Sweet & Hot Pepper, Cabbage, Cucumber, Melon, etc.

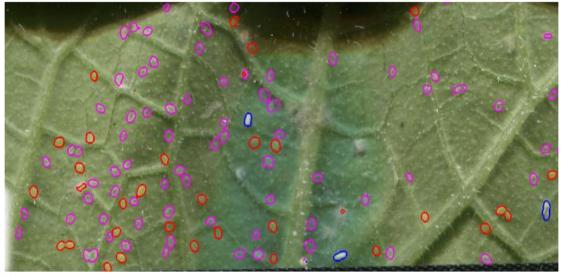
Field Crops

Potato, Rye, Wheat, Sugar Beet, Tobacco, Dandelion, Soybean, Corn, Canola, Sorghum, Rice, Barley, Cassava, Sunflower, etc.

In-house industrialized procedure in one go

- typically 4,000 25,000 mutagenized plants
- up to 20 genes simultaneously screened, number still growing
- patentable induced variations
- combined with CropPedia® & KeySeeQ® gene discovery system
- many mutants phenotyped and introduced in breeding programs


Impact: Development of unique breeding material, attractive for introduction in commercial breeding



BETTER PHENOTYPING TECHNOLOGIES: DIGITAL WHITEFLY ASSESSMENT

Whitefly bio assay data collection:

- Automatic detection of a developmental stages of whiteflies including eggs and larval stages
- Deep learning algorithm counts eggs and juveniles

Impact: digital analysis of whitefly infested leaves provide a robust, cheap, high throughput measure for insects. It replaces labor-intensive meticulous and highly trained human observations.

BETTER TRAITS: IMPROVED RICE YIELD AND CROP PERFORMANCE

KeySeeQ® followed by KeyPoint® Breeding has resulted in higher grain yield & more erect panicles

Impact: Effective development & market introduction of high yielding rice varieties for Shriram Bioseed

BETTER TRAITS: POWDERY MILDEW RESISTANCE IN WHEAT

Powdery Mildew fungi are a source of yield losses in wheat especially in ecological production without fungicides. KeyGene has discovered three S gene homeologs of the S gene MLO of hexaploid wheat

Impact: by combining strong loss of susceptibility alleles – created by KeyPoint® - of all relevant MLO homeologs in wheat, Powdery Mildew resistant germplasm was created. This material will enable wheat breeders to generate PM resistant crops that are less dependent on fungicides

BETTER TRAITS: RESISTANCE TO GEMINI VIRUSES IN SWEET PEPPER

Broad resistance to Gemini virus generated using the "loss of susceptibility" approach

Impact: Contribution to sustainable agriculture, breeders using resistance to Gemini virus disease in pepper breeding

NEW AND IMPROCED CROPS: BANANA BREEDING & RESEARCH

State of the art genomics tools & wild banana types for banana plants resistant to Fusarium (Panama disease) & Mycosphaerella (Black Sigatoka), and increased diversity for sustainability

Impact: International breeding collaboration started in 2022, academics & business: Yelloway

NEW CROPS: DANDELION AS A NEW SOURCE OF NATURAL RUBBER

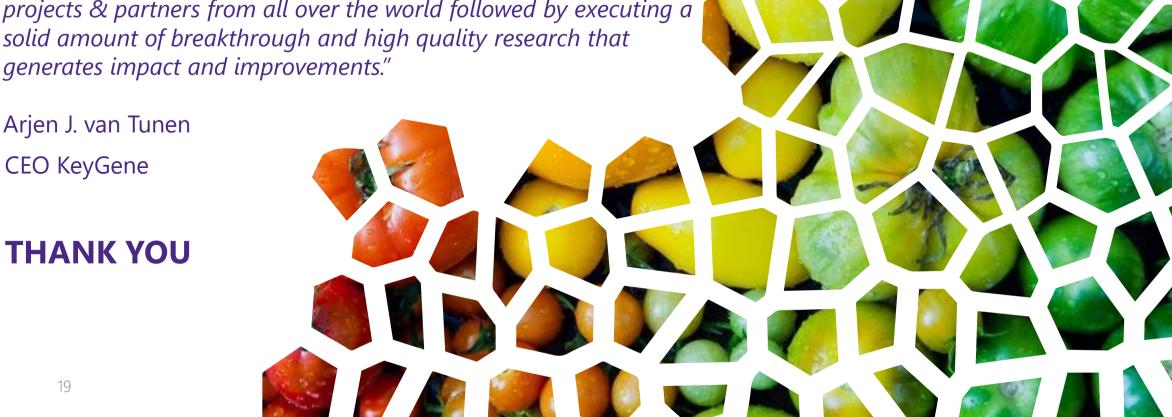
State of the art genomic & breeding tools resulted in succesful interspecific cross of tiny Kazach rubber dandelion and robust Dutch dandelion

Impact: Flexilis® hybrid varieties with superior yield, foundation of LionFlex breeding company

NEW AND IMPROVED CROPS: HIGH PROTEIN CROPS FOR HUMAN FOOD

Faba bean, yellow pea, lupin as new source for plant proteins: increase yields and prevents pests and diseases by molecular breeding

Impact: developing Faba bean, yellow pea and lupin as protein crops grown in temperate climates will further enable the protein transition.


"As a "Technological Innovation Engine for Crop **Improvement**", KeyGene innovates not only <u>for</u> our strategic partners but especially with our partners. I am proud that we can bring together and collaborate with different people, ideas,

projects & partners from all over the world followed by executing a

generates impact and improvements."

Arjen J. van Tunen CEO KeyGene

THANK YOU

